Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes.
نویسندگان
چکیده
The spindle assembly checkpoint (SAC) averts aneuploidy by coordinating proper bipolar chromosomal attachment with anaphase-promoting complex/cyclosome (APC/C)-mediated securin and cyclin B1 destruction required for anaphase onset. The generation of a Mad2-based signal at kinetochores is central to current models of SAC-based APC/C inhibition. During mitosis, kinetochores of polar-displaced chromosomes, which are at greatest risk of mis-segregating, recruit the highest levels of Mad2, thereby ensuring that SAC activation is proportionate to aneuploidy risk. Paradoxically, although an SAC operates in mammalian oocytes, meiosis I (MI) is notoriously error prone and polar-displaced chromosomes do not prevent anaphase onset. Here we find that Mad2 is not preferentially recruited to the kinetochores of polar chromosomes of wild-type mouse oocytes, in which polar chromosomes are rare, or of oocytes depleted of the kinesin-7 motor CENP-E, in which polar chromosomes are more abundant. Furthermore, in CENP-E-depleted oocytes, although polar chromosomal displacement intensified during MI and the capacity to form stable end-on attachments was severely compromised, all kinetochores nevertheless became devoid of Mad2. Thus, it is possible that the ability of the SAC to robustly discriminate chromosomal position might be compromised by the propensity of oocyte kinetochores to become saturated with unproductive attachments, thereby predisposing to aneuploidy. Our data also reveal novel functions for CENP-E in oocytes: first, CENP-E stabilises BubR1, thereby impacting MI progression; and second, CENP-E mediates bi-orientation by promoting kinetochore reorientation and preventing chromosomal drift towards the poles.
منابع مشابه
The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes
In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis...
متن کاملDNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.
In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overr...
متن کاملBorealin regulates bipolar spindle formation but may not act as chromosomal passenger during mouse oocyte meiosis.
In mitosis, Borealin is a member of the chromosomal passenger complex (CPC), which plays interaction roles with INCENP and survivin in the complex. Its roles in mammalian meiosis are unknown. Here, we report the expression, localization, and function of Borealin and its relation with survivin in mouse oocyte meiosis. Borealin expression was gradually increased from GV stage to MII. Immunofluore...
متن کاملAn actin-dependent spindle position checkpoint ensures the asymmetric division in mouse oocytes
Faithful chromosome segregation, during meiosis, is of critical importance to prevent aneuploidy in the resulting embryo. In mammalian oocytes, the segregation of homologous chromosomes takes place with the spindle located at the cell's periphery. The spindle is often assembled close to the centre of the cell, which necessitates the actin network for spindle transport to the cell cortex. In thi...
متن کاملWhy is chromosome segregation error in oocytes increased with maternal aging?
It is well documented that female fertility is decreased with advanced maternal age due to chromosome abnormality in oocytes. Increased chromosome missegregation is mainly caused by centromeric cohesion reduction. Other factors such as weakened homologous recombination, improper spindle organization, spindle assembly checkpoint (SAC) malfunction, chromatin epigenetic changes, and extra-oocyte f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 139 11 شماره
صفحات -
تاریخ انتشار 2012